Quantum Monte Carlo computations of phase stability, equations of state, and elasticity of high-pressure silica.

نویسندگان

  • K P Driver
  • R E Cohen
  • Zhigang Wu
  • B Militzer
  • P López Ríos
  • M D Towler
  • R J Needs
  • J W Wilkins
چکیده

Silica (SiO(2)) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrödinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense alpha-PbO(2) structure above the core-insulating D" layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantum-mechanical investigation of functional group effect on 5,5'-disubstituted-1,1'-azobis(tetrazoles)

The present work reports the detailed B3LYP/6-311++G(d,p) study of most stable transand cisconfigurations photoisomerization in the core system of computational photochemistry-the 5,5'-disubstituted-1,1'-azobis (tetrazole) molecules. All computations were carried out in gas phase attemperature 293.15 K and pressure 1 atm. Firstly; the potential energy surface (PES) of the groundstate of the mol...

متن کامل

Energy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations

The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...

متن کامل

Interaction of Pyrimidine Nucleobases with Silicon Carbide Nanotube: Effect of Functionalization on Stability and Solvation

This study is about Complexes of Li doped silicon carbide nanotube with Thymine and Cytosine ingas phase and aqueous solutions. Li doped silicon carbide nanotube and its pyrimidine nucleobasecompounds were first modeled by Quantum mechanical calculations in gas phase and in water.Calculated binding energies indicated the stronger ability of thymine to functionalize silicon carbidenanotube than ...

متن کامل

Kinetic and Quantum Phenomena in Expanding Gas Flows

This paper presents the results of numerical studies of rotational-translational nonequilibrium, kinetic, and diffusive processes in spherical expanding gas flows. Computations are made using the direct simulation Monte-Carlo (DSMC) method [1, 2] and the solver [3] of the Navier-Stokes equations in terms of classical and quantum concepts [3-7], at the Knudsen numbers Kn* from 0.0015 to 0.03 and...

متن کامل

Importance of Magnetism in Phase Stability, Equations of State, and Elasticity

— The effects of magnetism on high pressure properties of transition metals and transition metal compounds can be quite important. In the case of Fe, magnetism is responsible for stability of the body-centered cubic (bcc) phase at ambient conditions, and the large thermal expansivity in face-centered cubic (fcc) iron, and also has large effects on the equation of state and elasticity of hexagon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 21  شماره 

صفحات  -

تاریخ انتشار 2010